This function changes the timestep of a table or an antaresData object and performs the required aggregation or desaggregation. We can specify (des)aggregate functions by columns, see the param fun.

changeTimeStep(x, newTimeStep, oldTimeStep, fun = "sum", opts = simOptions())

Arguments

x

data.table with a column "timeId" or an object of class "antaresDataList"

newTimeStep

Desired time step.The possible values are hourly, daily, weekly, monthly and annual.

oldTimeStep

Current time step of the data. This argument is optional for an object of class antaresData because the time step of the data is stored inside the object

fun

Character vector with one element per column to (des)aggregate indicating the function to use ("sum", "mean", "min" or "max") for this column. It can be a single element, in that case the same function is applied to every columns.

opts

list of simulation parameters returned by the function setSimulationPath

Value

Either a data.table or an object of class "antaresDataList" depending on the class of x

Examples

if (FALSE) { # \dontrun{
setSimulationPath()

areasH <- readAntares(select = "LOAD", synthesis = FALSE, mcYears = 1)
areasD <- readAntares(select = "LOAD", synthesis = FALSE, mcYears = 1, timeStep ="daily")

areasDAgg <- changeTimeStep(areasH, "daily", "hourly")

all.equal(areasDAgg$LOAD, areasD$LOAD)

# Use different aggregation functions
mydata <- readAntares(select = c("LOAD", "MRG. PRICE"), timeStep = "monthly")
changeTimeStep(mydata, "annual", fun = c("sum", "mean"))
} # }