Antares API OK (thermal clusters only)

Create a new thermal or RES (renewable energy source) cluster.

createCluster(
  area,
  cluster_name,
  group = "Other",
  ...,
  list_pollutants = NULL,
  time_series = NULL,
  prepro_data = NULL,
  prepro_modulation = NULL,
  add_prefix = TRUE,
  overwrite = FALSE,
  opts = antaresRead::simOptions()
)

createClusterRES(
  area,
  cluster_name,
  group = "Other RES 1",
  ...,
  time_series = NULL,
  add_prefix = TRUE,
  overwrite = FALSE,
  opts = antaresRead::simOptions()
)

Arguments

area

The area where to create the cluster.

cluster_name

Name for the cluster, it will prefixed by area name, unless you set add_prefix = FALSE.

group

Group of the cluster, depends on cluster type:

  • thermal cluster, one of: Gas, Hard coal, Lignite, Mixed fuel, Nuclear, Oil, Other, Other 2, Other 3, Other 4.

  • renewable cluster, one of: Wind Onshore, Wind Offshore, Solar Thermal, Solar PV, Solar Rooftop, Other RES 1, Other RES 2, Other RES 3, Other RES 4.

...

Parameters to write in the Ini file. Careful! Some parameters must be set as integers to avoid warnings in Antares, for example, to set unitcount, you'll have to use unitcount = 1L.

list_pollutants

list named with specific pollutants (only for Antares version >= 860)

time_series

the "ready-made" 8760-hour time-series available for simulation purposes.

prepro_data

Pre-process data, a data.frame or matrix, default is a matrix with 365 rows and 6 columns.

prepro_modulation

Pre-process modulation, a data.frame or matrix, if specified, must have 8760 rows and 1 or 4 columns.

add_prefix

If TRUE (the default), cluster_name will be prefixed by area name.

overwrite

Logical, overwrite the cluster or not.

opts

List of simulation parameters returned by the function antaresRead::setSimulationPath()

Value

An updated list containing various information about the simulation.

Note

Parameter list_pollutants is only available for Antares studies >= v8.6.0.

You must provide named list (numerical values or NULL ) :

list( "nh3"= 0.25, "nox"= 0.45, "pm2_5"= 0.25, "pm5"= 0.25, "pm10"= 0.25, "nmvoc"= 0.25, "so2"= 0.25, "op1"= 0.25, "op2"= 0.25, "op3"= 0.25, "op4"= 0.25, "op5"= NULL, "co2"= NULL)

See also

editCluster() or editClusterRES() to edit existing clusters, removeCluster() or removeClusterRES() to remove clusters.

Examples

if (FALSE) { # \dontrun{

library(antaresRead)
library(antaresEditObject)

# Create a cluster :
createCluster(
  area = "fr", 
  cluster_name = "my_cluster",
  group = "other", 
  unitcount = 1L, # or as.integer(1)
  marginal_cost = 50
)
# by default, cluster name is prefixed 
# by the area name
levels(readClusterDesc()$cluster)
# > "fr_my_cluster"

# To prevent this, use `add_prefix`
createCluster(
  area = "fr", 
  cluster_name = "my_cluster",
  add_prefix = FALSE,
  group = "other", 
  marginal_cost = 50
)
levels(readClusterDesc()$cluster)
# > "my_cluster"


# Create a RES cluster :
createClusterRES(
  area = "fr", 
  cluster_name = "my_cluster_res",
  group = "other", 
  unitcount = 1L, # or as.integer(1)
  nominalcapacity = 50,
  ts_interpretation = "power-generation"
) 

# You can also specify that the Time-Series of the RES cluster are
# production factors :
createClusterRES(
  area = "fr", 
  cluster_name = "my_cluster_res",
  group = "other", 
  unitcount = 1L, # or as.integer(1)
  nominalcapacity = 50,
  ts_interpretation = "production-factor"
)


# Pre-process data : 

# this is the default data :
createCluster(
  area = "fr", 
  cluster_name = "my_cluster",
  prepro_data = matrix(
    data = c(rep(1, times = 365 * 2),
             rep(0, times = 365 * 4)), 
    ncol = 6
  )
)

# with a data.frame
createCluster(
  area = "fr", 
  cluster_name = "my_cluster",
  prepro_data = data.frame(
    v1 = rep(7, 365), # column name does not matter
    v2 = rep(27, 365),
    v3 = rep(0.05, 365),
    v4 = rep(0.12, 365),
    v5 = rep(0, 365),
    v6 = rep(1, 365)
  )
)


# Pre-process modulation : 
# this is the default data
createCluster(
  area = "fr", 
  cluster_name = "my_cluster",
  prepro_modulation = matrix(
    data = c(rep(1, times = 365 * 24 * 3),
             rep(0, times = 365 * 24 * 1)),
    ncol = 4
  )
)

# with a data.frame
createCluster(
  area = "fr", 
  cluster_name = "my_cluster",
  prepro_modulation = data.frame(
    var1 = rep(0, 8760), # column name does not matter
    var2 = rep(1, 8760),
    var3 = rep(0, 8760),
    var4 = rep(1, 8760)
  )
)

} # }